

Kubernetes on
Container Linux

My Experience

Slightly different talk from other talks as it’s not technical.

Ambrose Chua

@serverwentdown

I’m still learning…

These are the main open source projects by CoreOS. Most notably would be the key-value store etcd, used in Kubernetes, and flannel, an overlay network supported by
Kubernetes. rkt is a container runtime that supports the open container image, Docker and the now-deprecated appc spec. Clair is a vulnerability analysis tool for
containers.

Container Linux is my favourite project. It’s based on the Chromium OS project, and unlike a conventional distribution, all that is contained in Container Linux is the
essentials to run containers: Docker, rkt and other CoreOS tools. No managing of packages.

A typical Linux distribution would have at least one root filesystem and multiple mounts. However Container Linux adopts a partition layout similar to ChromiumOS,
where there are two /usr partitions that contain readonly data. These partitions contain the core of the operating system, and since there are two partitions you can
overwrite the unmounted one with an update and reboot to take effect.

So, one day, I decided to try to get rid of my old server setup. It ran on a single node, uses configuration files and scripts to perform limited automation.

 There was no continuous integration except for SCPing files from GitLab CI to the host machine.

 Running Kubernetes

And even though I had very limited experience with containers, I knew it was a good direction to go. So I decided on running Kubernetes on Container Linux, as a
challenge for myself.

Step 1:
Installing Container

Linux

Container Linux can be booted many ways. I decided to install it to disk using the ISO, on bare metal. I chose bare metal because I didn’t want the overhead of a VM,
and the need to manage it. I also would eventually migrate everything to Containers, even if the containers were stateful.

 coreos-install -d /dev/sda -i ignition.json

Container Linux also recently introduced a change to their configuration through userdata. (Explain cloud-init) Container Linux has a YML-based configuration that
transpires to JSON using a tool, and that can be put into userdata. It includes many CoreOS-specific configuration, and reduces the amount of configuration.

#cloud-config

passwd:
 users:
 - name: core
 ssh_authorized_keys:
 - “ecdsa-sha2-nistp256 …”

etcd:
 version: 3.1.6
 name: "controller"
 discovery: “https://discovery.etcd.io/…”
 listen_client_urls: “http://10.0.1.1:2379,http://127.0.0.1:2379”
 advertise_client_urls: "http://10.0.1.1:2379"
 listen_peer_urls: "http://10.0.1.1:2380"
 initial_advertise_peer_urls: "http://10.0.1.1:2380"

locksmith:
 reboot_strategy: "etcd-lock"

networkd:
 units:
 - name: static.network
 contents: |
 [Match]
 Name=enp2s0

 [Network]
 Address=10.0.1.1/22
 Gateway=10.0.0.1
 DNS=10.0.0.1

…

{"ignition":{"version":"2.0.0","config":{}},"storage":{"files":
[{"filesystem":"root","path":"/etc/hostname","contents":
{"source":"data:,controller","verification":{}},"mode":420,"user":
{},"group":{}},{"filesystem":"root","path":"/etc/coreos/
update.conf","contents":{"source":"data:,
%0AREBOOT_STRATEGY%3D%22etcd-
lock%22","verification":{}},"mode":420,"user":{},"group":
{}}]},"systemd":{"units":[{"name":"etcd-
member.service","enable":true,"dropins":[{"name":"20-clct-
etcd-member.conf","contents":"[Service]
\nEnvironment=\"ETCD_IMAGE_TAG=v3.1.6\"\nExecStart=\n
ExecStart=/usr/lib/coreos/etcd-wrapper $ETCD_OPTS \\\n --
name=\"controller\" \\\n --listen-peer-urls=\"http://
10.0.1.1:2380\" \\\n --listen-client-urls=\"http://
10.0.1.1:2379,http://127.0.0.1:2379\" \\\n --initial-advertise-
peer-urls=\"http://10.0.1.1:2380\" \\\n --advertise-client-
urls=\"http://10.0.1.1:2379\" \\\n —discovery=\”https://
discovery.etcd.io/…\""}]}]},"networkd":{"units":
[{"name":"static.network","contents":"[Match]
\nName=enp2s0\n\n[Network]
\nAddress=10.0.1.1/21\nGateway=10.0.0.1\nDNS=10.0.0.1\
n"}]},"passwd":{"users":[{"name":"core","sshAuthorizedKeys":
["ecdsa-sha2-nistp256 …”]}]}}

Step 2:

Installing Kubernetes

There’s an official guide to deploy Kubernetes on Container Linux, and even though it works it’s a little out of date. But most importantly it’s laborious, and I’m sure there
were scripts to automate it.

So I searched and found these. I thought they weren’t referenced anywhere in the Container Linux documentation, but I found them later

 Automating

So I knew that I could get Kubernetes up and running on baremetal, but I needed to be able to reproduce the entire setup without going through the entire process of
editing scripts. Thus, I threw all the configuration into a single script that generates scripts to be run at each step of the process, and centralised the configuration, and of
course put it on GitHub.

So here is my repo containing everything. It’s still work in progress so don’t look at it. Not even ready for a staging server. It’s state is still experimental, but the eventual
goal is to have an entire setup, including continuous integration, reverse proxying and management scripts in this repository, and make sure I can bring up an exact
replica of my setup without effort.

There are also some projects out there like this one by Eugene Chow.

 Why scripts?

There are other ways to install Kubernetes like through Tectonic or matchbox, but it requires me to modify my network setup, and requires at least three nodes, is not
open source, so I didn’t manage to try it out.

 Thank you!

