Kubernetes on
Container Linux

My Experience

Slightly different talk from other talks as it’s not technical.

Ambrose Chua

@serverwentdown

I’m still learning...

seted @ @ rkt
fflannel @) clair

These are the main open source projects by CoreOS. Most notably would be the key-value store etcd, used in Kubernetes, and flannel, an overlay network supported by
Kubernetes. rkt is a container runtime that supports the open container image, Docker and the now-deprecated appc spec. Clair is a vulnerability analysis tool for
containers.

container linux

Container Linux is my favourite project. It’s based on the Chromium OS project, and unlike a conventional distribution, all that is contained in Container Linux is the
essentials to run containers: Docker, rkt and other CoreOS tools. No managing of packages.

Partition table

NUMBER LABEL DESCRIPTION PARTITION TYPE
1 EFI-SYSTEM Contains the bootloader VFAT
2 BIOS-BOOT This partition is reserved for future use (none)
3 USR-A One of two active/passive partitions holding Container Linux EXT4
4 USR-B One of two active/passive partitions holding Container Linux (empty on first boot)
5 ROOT-C This partition is reserved for future use (none)
6 QEM Stores configuration data specific to an OEM platforn EXT4
7 OEM-CONFIG ~ Optional storage for an OEM (defined by OEM)
8 (unused) This partition is reserved for future use (none)
9 ROOT Stateful partition for storing persistent data EXT4, BTRFS, or XFS

For more information, read more about the disk layout used by Chromium and ChromeQS, which inspired the layout
used by Container Linux.

A typical Linux distribution would have at least one root filesystem and multiple mounts. However Container Linux adopts a partition layout similar to ChromiumOS,
where there are two /usr partitions that contain readonly data. These partitions contain the core of the operating system, and since there are two partitions you can
overwrite the unmounted one with an update and reboot to take effect.

NORMAL /hosting/tools/create.sh

So, one day, | decided to try to get rid of my old server setup. It ran on a single node, uses configuration files and scripts to perform limited automation.

- partials/

- author.hbs

- default.hbs
- index.hbs

- page.hbs

- post.hbs

- tag.hbs

- package.json

deploy:
stage: deploy
script:

echo "Deploying... "

eval $(ssh-agent -s)

ssh-add <(echo "$GITLAB_DEPLOY_KEY")

mkdir -p ~/.ssh

scp -0 StrictHostKeyChecking=no -r assets/ partials/ author.
ssh gitlab-deploy@nodel.makerforce.io sudo —-u hosting XDG_RU

only:

master

There was no continuous integration except for SCPing files from GitLab CI to the host machine.

Running Kubernetes

And even though | had very limited experience with containers, | knew it was a good direction to go. So | decided on running Kubernetes on Container Linux, as a
challenge for myself.

Step 1:

Installing Container
Linux

Container Linux can be booted many ways. | decided to install it to disk using the ISO, on bare metal. | chose bare metal because | didn’t want the overhead of a VM,
and the need to manage it. | also would eventually migrate everything to Containers, even if the containers were stateful.

coreos-install -d /dev/sda -i ignition.json

Container Linux also recently introduced a change to their configuration through userdata. (Explain cloud-init) Container Linux has a YML-based configuration that
transpires to JSON using a tool, and that can be put into userdata. It includes many CoreOS-specific configuration, and reduces the amount of configuration.

#cloud-config

passwd:
users:
- name: core
ssh_authorized_keys:
- “ecdsa-sha2-nistp256..."

etcd:
version: 3.1.6
name: "controller"

discovery: “https://discovery.etcd.io/...”

listen_client_urls: “http://10.0.1.1:2379,http://127.0.0.1:2379”
advertise_client_urls: "http://10.0.1.1:2379"

listen_peer_urls: "http://10.0.1.1:2380"
initial_advertise_peer_urls: "http://10.0.1.1:2380"

locksmith:
reboot_strategy: "etcd-lock"

networkd:
units:
- name: static.network
contents: |
[Match]
Name=enp2s0

[Network]
Address=10.0.1.1/22
Gateway=10.0.0.1
DNS=10.0.0.1

{"ignition":{"version":"2.0.0""config":{}},"'storage":{"files":
[{"filesystem":"root",'path":"/etc/hostname",'contents":
{"source":"data:,controller""verification":{}},'mode":420,"user":
{3,"group":{}}.{"filesystem":"root""path":"/etc/coreos/
update.conf")'contents":{"source":"data:,
%0AREBOOT_STRATEGY%3D%22etcd-
lock%22""verification":{}},'mode":420,"user":{},"group":

{11} systemd":{"units":[{"name":"etcd-

member.service'"'enable":true,'dropins":[{"name":"20-clct-
etcd-member.conf"'contents":"[Service]
\nEnvironment=\"ETCD_IMAGE_TAG=v3.1.6\"\nExecStart=\n
ExecStart=/usr/lib/coreos/etcd-wrapper $ETCD_OPTS \\n --
name=\"controller\"\\\n --listen-peer-urls=\"http://
10.0.1.1:2380\" \\\n --listen-client-urls=\"http://
10.0.1.1:2379,http://127.0.0.1:2379\" \\n --initial-advertise-
peer-urls=\"http://10.0.1.1:2380\" \\n --advertise-client-
urls=\"http://10.0.1.1:2379\" \n —discovery=\"https://
discovery.etcd.io/...\""}]}]},'networkd":{"units":
[{"name":"static.network""'contents":"[Match]
\nName=enp2s0\n\n[Network]
\nAddress=10.0.1.1/21\nGateway=10.0.0.1\nDNS=10.0.0.1\
n"}},"passwd":{"users":[{"name":"core")'sshAuthorizedKeys":
["ecdsa-sha2-nistp256..."1}1}}

Step 2:

Installing Kubernetes

o Core 0% Products v Open Source v Resources Company v Contact Us

Kubernetes on CoreOS

Achieve high-availability and improve efficiency of container deployments

© Overview & Documentation © GitHub Project

CoreOS + Kubernetes Step By Step

This guide will walk you through a deployment of a single-master/multi-worker Kubernetes cluster on Core0S. We're going to:

e configure an etcd cluster for Kubernetes to use

e generate the required certificates for communication between Kubernetes components
e deploy a master node

e deploy worker nodes

e configure kubectl towork with our cluster

e deploy the DNS add-on

e deploy the network policy add-on

Working through this guide may take you a few hours, but it will give you good understanding of the moving pieces of your cluster
and set you up for success in the long run. For a shortcut, you can utilize these generic user-data scripts. Let's get started.

Deployment Options

There’s an official guide to deploy Kubernetes on Container Linux, and even though it works it’s a little out of date. But most importantly it’s laborious, and I’m sure there
were scripts to automate it.

0 This repository Pull requests Issues Marketplace Gist

L] coreos / coreos-kubernetes @ Watch~ 93 W Star 897 YFork 413
<> Code Issues 113 Pull requests 28 Projects 0 Insights ~
Branch: master v coreos-kubernetes / multi-node / generic / Create new file ~ Upload files Find file = History

aaronlevy Bump k8s version v1.5.4 Latest commit caa@b45 on 14 Mar

[E) README.md *: Fix broken links 4 months ago
[E) controller-install.sh Bump k8s version v1.5.4 4 months ago
[E) worker-install.sh Bump k8s version v1.5.4 4 months ago

EE README.md

Kubernetes on CoreOS with Generic Install Scripts

This guide will setup Kubernetes on CoreOS in a similar way to other tools in the repo. The main goal of these scripts is to
be generic and work on many different cloud providers or platforms. The notable difference is that these scripts are
intended to be platform agnostic and thus don't automatically setup the TLS assets on each host beforehand.

Read the documentation to boot a cluster

So | searched and found these. | thought they weren’t referenced anywhere in the Container Linux documentation, but | found them later

o Core 05 Products v Open Source v Resources Company v Contact Us

Kubernetes on CoreOS

Achieve high-availability and improve efficiency of container deployments

O Overview & Documentation ©) GitHub Project

Kubernetes on CoreOS with Generic Install Scripts

This guide will setup Kubernetes on CoreOS in a similar way to other tools in the repo. The main goal of these scripts is to be
generic and work on many different cloud providers or platforms. The notable difference is that these scripts are intended to be
platform agnostic and thus don't automatically setup the TLS assets on each host beforehand.

While we provide these scripts and test them through the multi-node Vagrant setup, we recommend using a platform specific
install method if available. If you are installing to bare-metal, you might find our baremetal repo more appropriate.

Generate TLS Assets

Review the OpenSSL-based TLS instructions for generating your TLS assets for each of the Kubernetes nodes.
Place the files in the following locations:
CONTROLLER FILES LOCATION

AP Certificate /etc/kubernetes/ssl/apiserver.pem

Automating

So | knew that | could get Kubernetes up and running on baremetal, but | needed to be able to reproduce the entire setup without going through the entire process of
editing scripts. Thus, | threw all the configuration into a single script that generates scripts to be run at each step of the process, and centralised the configuration, and of
course put it on GitHub.

O This repository Pull requests Issues Marketplace Gist A +- [F -~

L] serverwentdown / infrastructure ® Unwatch~ 2 *Star 0 YFork 0
<> Code Issues 0 Pull requests 0 Settings Insights ~

The upcoming MakerForce infrastructure setup, powered by pfSense, CoreOS, Kubernetes, rkt and Go Edit

Add topics

{p 30 commits P 1 branch © 0 releases 42 1 contributor

Branch: master v New pull request Create new file Upload files Find file Clone or download v
serverwentdown Add untested ingress configurations Latest commit 270a08f3 24 days ago
i 10-pki Initial untested multi-worker support 2 months ago
B 20-pfsense Initial CoreQOS installer script 2 months ago
i 30-coreos Initial untested multi-worker support 2 months ago
m 40-kubernetes Fix missing folder 2 months ago
B 50-ingress Add untested ingress configurations 24 days ago
[E .gitignore Ignore .srl file 2 months ago
=] README.md Update README.md 2 months ago
=) build Initial untested multi-worker support 2 months ago
=] config Add untested ingress configurations 24 days ago
README.md

So here is my repo containing everything. It’s still work in progress so don’t look at it. Not even ready for a staging server. It’s state is still experimental, but the eventual
goal is to have an entire setup, including continuous integration, reverse proxying and management scripts in this repository, and make sure | can bring up an exact
replica of my setup without effort.

O This repository Pull requests Issues Marketplace Gist

L1 eugene-chow / kube-coreos-bash ®Watch~ 0 #Star 0 YFork 0
<> Code Issues 0 Pull requests 0 Projects 0 Wiki Insights «

Build an (almost) production-grade kubernetes cluster on top of CoreOS Container Linux

D 3 commits ¥ 1branch © O releases 42 1 contributor
Branch: master v New pull request Create new file Upload files = Find file
H eugene-chow Updated docs Latest commit 252¢22@ on 19 May
[E) README.md Updated docs a month ago
[ca-config.json First commit a month ago
[E) ca-csr.json First commit a month ago
[Z) controller-install.sh First commit a month ago
[E) etcd-install.sh First commit a month ago
[) gencert.sh First commit a month ago
[E) sendcert.sh First commit a month ago
[E) worker-install.sh First commit a month ago

EE README.md

kuhe-corencs-hach

There are also some projects out there like this one by Eugene Chow.

Why scripts?

There are other ways to install Kubernetes like through Tectonic or matchbox, but it requires me to modify my network setup, and requires at least three nodes, is not
open source, so | didn’t manage to try it out.

Thank you!

